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Arbitrary-order nonlinear contribution to self-steepening
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On the basis of the recently published generalized Miller formulas, we derive the spectral dependence of the con-
tribution of arbitrary-order nonlinear indices to the group-velocity index. We show that in the context of laser fi-
lamentation in gases, all experimentally accessible orders (up to the ninth-order nonlinear susceptibility ¥ in air
and 1 in argon) have contributions of alternative signs and similar magnitudes. Moreover, we show both analy-
tically and numerically that the dispersion term of the nonlinear indices must be considered when computing the
intensity-dependent group velocity. © 2010 Optical Society of America

OCIS codes: 190.3270, 190.7110, 120.4530.

Nonlinear optics [1] relies on the nonlinear properties of
the propagation medium, among which the successive
orders of the nonlinear susceptibility are essential para-
meters. However, due to the difficulty in measuring them
experimentally, their knowledge is generally limited to
the first nonzero order (y@ or ), depending on medium
symmetry). Furthermore, the available laser sources
drastically limit the wavelengths available for such mea-
surements, so that reliable dispersion curves for higher-
order susceptibilities cannot be deduced from the sparse
experimental data available to date.

The lack of data led to the neglect of these higher order
Kerr terms in most numerical simulations of, e.g., both
self-guided filaments in ultrashort intense laser pulses
[2-5] or the propagation of high-intensity pulses in
hollow-core fibers [6]. Similarly, the Kerr contribution
to the group velocity is most generally limited to the third
order and treated as dispersionless in the lack of data
about its dispersion [3,4]. Recently, however, the mea-
surement of the higher-order refractive indices up to ng
in Ny and Oy, and up to 1, in argon [7,8], followed by the
generalization of the Miller formulas [9] to any order of
nonlinearity [10], provided a new insight into the spectral
dependence of the nonlinear refractive index at high in-
cident intensity.

This allowed us to show that these terms cannot be
neglected and can even provide the dominant contribu-
tion stabilizing the self-guided filaments [11]. Further-
more, in argon-filled hollow-core fibers, these terms are
necessary to obtain quantitative agreement of numerical
simulations with experimental data [12,13]. But these
works focused on the contribution of higher-order Kerr
terms to phase velocity. The contribution of the spectral
dispersion of higher-order indices to group velocity was
not considered, although it can be expected to impact the
propagation, and in particular the self-steepening term.

Here we derive an explicit expression for the contribu-
tion of any order of the nonlinear refractive indices to the
group-velocity index. We show that in filamentation, all
nonlinear orders of the group-velocity index can have si-
milar orders of magnitude and must be considered.
Furthermore, especially in the UV, the dispersion of the
nonlinear indices cannot be neglected when calculating
self-steepening.
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At arbitrary intensity I and frequency w, the refractive
index can be expressed as [1]

n(w) = ny(®) + nay(0) +ng(0)I? + ... = ; nzj(a))lj.
=0
(1)

In gases, where n - 1 < 1, the refractive index n(w) =

\/ 1432 ¥V (o)l can be approximated by [1]
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where y%*1 is the (2§ + 1)th-order nonlinear susceptibil-
ity and the Z(#¥*1) are frequency-independent factors. If a
pulse can be described as a carrier wave modulated by an
envelope with a sufficiently narrow spectrum to allow ne-
glection of the envelope deformations over short dis-
tances, then a group-velocity index can be defined as

ny(w) —é—n(w)—i—wgz, 4)

where v, is the group velocity and ¢ is the speed of
light in vacuum. Defining Z() = 1/2 and considering
Egs. (1)-(3), n, is rewritten:
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Identifying the terms for each power of the intensity,
we obtain the contribution of each order of nonlinearity
to the group-velocity index:
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The first expression corresponds to the usual linear
contribution, while the first term in the expression of
the group-velocity index n, ;, corresponds to the classical
self-steepening term [1,14,15]. Within the -elastically
bound electron model, the susceptibility of the arbitrary
order is given up to any order by the generalized Miller
formulas [10]:
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where m and —e are the electron mass and charge, € is
the permittivity of vacuum, N is the density of dipoles in
the propagation medium, y is the width of the resonance
at frequency w,, and Q¢ describes the potential well
where the electron oscillates; Q(w) = w - @* + iwyy. In-
serting these expressions into Egs. (7) and (8) yields
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These equations provide a general expression of each
nonlinear contribution to the group-velocity index n,,. As
a consequence, it allows evaluation of the impact of
higher-order Kerr terms on self-steepening in the context
of laser filamentation in gases or the propagation of
ultrashort pulses in hollow fibers. In the following, we
consider the propagation of high-intensity pulses in
transparent media, far from resonance. In this case,
lwg — w| 3>y, so that @} + 0® > |0} - ©*| > wyy. The
imaginary parts of Egs. (11) and (12) become negligible:
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Note that the negative values obtained for w > w,
correspond to the well-known region of the negative
group-velocity index [16]. Figure 1 displays the spectral

dependence from Eq. (14), based on the recent ex-
perimental measurements of ny; at 800 nm [7,8,11], extra-
polated to the whole visible spectrum by applying gener-
alized Miller formulas [10] and the dispersion data of
Zhang et al. [17].

From Egs. (13) and (14), we can estimate the ratio of
the successive terms of the group-velocity index
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The second factor of Egs. (15) and (16) is of the order
of 1. Therefore, the orders of magnitude of the ratio of
successive terms are driven by the ratio of the nonlinear
indices ny;, multiplied by /. The values displayed in Fig. 1
imply that, for I <10 W/cm?, nyll <ng-1. Self-
steepening is, therefore, as well known [14,15], a second-
order term in the nonlinear Schrédinger equation (NLSE)
describing the nonlinear propagation of light in a non-
linear transparent medium. Furthermore, all known
terms in nzjlj have alternate signs and comparable orders
of magnitude [7,8,10]. The same, therefore, applies to the
terms in ngzjlj , which must all be taken into account
when describing self-steepening e.g., in the context of fi-
lamentation, where the intensity is clamped around 5 x
10® W/cm? [18,19], or of the propagation in hollow
fibers.

Equation (14) provides an estimation of the error per-
formed when neglecting the dispersion term in the con-
tribution of the higher-order indices to the group-velocity
index. Figure 2 displays the relative error 1 — ny;/n, 5; im-
plied at atmospheric pressure when neglecting the dis-
persion terms of the Kerr contributions to the group
velocity. The calculations are based on the same data
asin Fig. 1. As is clear from Eq. (14), this error decreases
for longer wavelengths, where dispersion is smoother. At
800 nm, it amounts to ~20% and may be considered ac-
ceptable, although not negligible. However, at blue or UV
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Fig. 1. Spectral dependence of the nonlinear group-velocity

indices: (a) ng2, (b) ny4, (¢) ny6, and (d) n,g of Oy, Ny, air,
and Ar at 1 atm.
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Fig. 2. Relative error induced when neglecting the dispersion
of the Kerr terms in the group velocity: (a) 1-ny/n,2, (b)
1-ny/ngy, (¢) 1-n6/ny6, and (d) 1 -ng/ngg of Oy, Ny, air,
and Ar at 1 atm.

wavelengths, the dispersion term dominates and must be
considered in the equations.

Numerical simulations of the propagation of a
35 fs pulse in a 1-m-long hollow-core fiber filled with
1.4 bars argon, confirm this finding. As described in de-
tail earlier [13], the model implements the NLSE, includ-
ing the higher-order Kerr terms. We compared the code
output with and without the contribution of the higher-
order indices to the group-velocity index up to the term
in ny, i.e., the terms of Eq. (6) for 1<j5<5. As can
be seen in Fig. 3, the consideration of the full steepening
term affects the spectrum by deforming the pulse
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contribution to the group-velocity index on the propagation
of a 35 fs, pulse with fixed n,(4)I in a 1-m-long hollow-core fiber
filled with 1.4 bars argon: (a), (d) 250 nm, 286 wuJ; (b), (e)
400 nm, 360 wJ; and (c), (f) 800 nm, 400 wxJ.

August 15, 2010 / Vol. 35, No. 16 / OPTICS LETTERS 2797

envelope. It simultaneously redshifts the central part
of the spectrum and blueshifts its edges. Furthermore,
as predicted by the analytic calculations, the contribution
of the dispersion of the higher-order Kerr terms is larger
in the UV and negligible in the IR. These terms must,
therefore, be considered in numerical simulations, espe-
cially while investigating spectral broadening.

In conclusion, based on the recent generalization of
the Miller formulas, we have estimated the contribution
of higher-order indices to the group-velocity index. These
contributions define the self-steepening term of the
NLSE. They have alternate signs and comparable abso-
lute values in intensity regimes typical of filamentation.
All nonlinear terms must, therefore, be considered in the
evaluation of the self-steepening of ultrashort intense
laser pulses propagating in transparent Kerr media.
Furthermore, we demonstrate both analytically and
numerically that their spectral dispersion cannot be
neglected either, especially at shorter wavelengths.
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