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ABSTRACT We demonstrate experimentally the first range-resolved detection and
identification of biological aerosols in the air by non-linear lidar. Ultra-short terawatt
laser pulses are used to induce two-photon-excited fluorescence (2PEF) in riboflavin-
containing particles at a remote location. We show that, in the case of amino acid
detection, 2PEF-lidar should be more efficient than linear 1PEF-lidar beyond a typical
distance of 2 km, because it takes advantage of the higher atmospheric transmission at
the excitation wavelengths. 2PEF-lidar moreover allows size measurement by pump–
probe schemes, and pulse shaping may improve the detection selectivity.

PACS 33.50.-j; 33.80.Wz; 42.65.-k; 42.68.Wt; 92.60.Mt

The early detection and identification
of potentially harmful bioagents in the
air has become a major issue for both
defence and public security reasons.
This requires fast detection of the out-
break location, 3D mapping of the
plume as it propagates, and unambigu-
ous identification of the agents among
the broad variety of atmospheric back-
ground aerosols. In this letter, we study
the application of fluorescence-based
lidar (light detection and ranging) [1] to-
wards these goals. We demonstrate ex-
perimentally the first remote detection
and identification of bioagent simulants
(riboflavin-doped microparticles) in the
air by non-linear lidar. We used ultra-
short laser pulses from the Teramo-
bile [2, 3] to induce in situ two-photon-
excited fluorescence (2PEF) [4] in the
aerosol particles. Two major reasons
motivate the use of ultra-short multi-
photon excitation: (1) the better atmo-
spheric transmission at longer wave-
lengths (decrease of Rayleigh scattering
and prevention of molecular absorption
such as ozone) and (2) the possibility
of simultaneous size measurement by
pump–probe schemes [5, 6] and coher-
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ent excitation with shaped pulses [7, 8]
to improve the detection selectivity.

Most of the bioagents, like the bacil-
lus anthracis (anthrax), are bacteria of
typically 1 µm in size [9]. Depending on
the spread conditions, they can agglom-
erate in clusters of sizes up to 10 µm.
They contain natural fluorophores, like
amino acids (e.g. tryptophan), nico-
tine amides (NADH), and flavins (e.g.
riboflavin (RBF) and flavoproteins),
which can be used as characteristic trac-
ers of their biological nature [10]. We
used the specific fluorescence signa-
ture at 540 nm of riboflavin, which we
excited with two photons at the fun-
damental wavelength (800 nm) of the
first terawatt lidar system, the Teramo-
bile [2, 3]. The Teramobile is based
on a chirped pulse amplified (CPA)
laser that delivers 5-TW pulses (80 fs,
400 mJ) at a 10-Hz repetition rate. The
laser pulses are sent into the atmo-
sphere using an all-reflective beam ex-
pander. The backward-emitted fluores-
cence and scattered signals are collected
by a 40-cm or 20-cm telescope depend-
ing on the application (longer or shorter
distance measurements), which focuses

the light on a spectrally resolved detec-
tor. The returns are recorded as a func-
tion of the photons’ flight time, provid-
ing distance resolution.

The bioagent simulants were pro-
duced with an aerosol generator located
at 45 m from the Teramobile. Their
size distribution and concentrations
were monitored using an optical sizer
(Grimm model G 1-108). They con-
sisted of water droplets of 1-µm size on
average containing 0.02 g/l riboflavin.

A key parameter to efficiently ex-
cite 2PEF in the microparticles is the
control of the laser pulse intensity at
the target location, because of the non-
linear nature of the excitation process.
For this, the pulses were shaped using
a negative linear chirp (shorter wave-
lengths of the 20-nm broad laser spec-
trum are launched before the longer
wavelengths) in order to compensate
the air group-velocity dispersion (GVD)
and reduce the initial pulse peak inten-
sity to prevent early filamentation. The
best negative chirp value, which corres-
ponds to a 1-ps pulse, leads to the results
shown in Fig. 1a. The corresponding
intensity on the target is 1011 W/cm2.
The detected 2PEF spectrum clearly
identifies the presence of riboflavin-
containing particles, and the lidar range
resolution (via the measurement of the
flight time of the light) allows the pre-
cise spatial localization of the biological
aerosol plume. The plume is measured
to be spread over some 10 m. The spa-
tial resolution is 45 cm, limited by the
fluorescence lifetime of 3 ns for this
transition [11]. Notice that the contrast
against fluorescence of the background
aerosols present in the air at the time
of the measurement is excellent. The
2PEF signature of riboflavin was com-
pared to the spectrum from pure wa-
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FIGURE 1 Remote detection and identification of bioaerosols. The femtosecond laser illuminates
a plume of riboflavin (RBF)-containing microparticles 45-m away (left). The backward-emitted two-
photon-excited fluorescence (2PEF), recorded as a function of distance and wavelength, exhibits the
specific RBF fluorescence signature for the bioaerosols (middle) but not for pure water droplets (sim-
ulating haze, right)

ter microdroplets (Fig. 1b). This clearly
demonstrates the capability of identi-
fying biological particles from back-
ground non-biological ones of the same
size. A smooth increase of the backscat-
tered signal is observed over 600 nm for
both bioagent simulants and pure water
due to self-phase modulation (SPM) of
the pulse as it propagates in air to the tar-
get. The spectrally broadened pulse is
elastically scattered by the aerosol par-
ticles in the plume. If filamentation was
not controlled using a negative chirp, the
SPM broadening would extend towards
UV–blue, which could partially mask
the fluorescence signature of the biopar-
ticles. These experiments also show that
the one photon per pulse detection limit
corresponds to a concentration as low
as 10 particles per cubic centimeter, for
a 10-m spatial resolution.

Using shorter-wavelength excita-
tion (around 530 nm) would provide
significant advantages as compared to
the 800-nm wavelength: (1) the already
high sensitivity would be further en-
hanced by using 2PEF from the amino
acid tryptophan (Trp) [9, 10], the con-
centration of which is typically 104

times higher than riboflavin in bac-
teria (108 Trp molecules in a 1-µm
particle [11]) and (2) two photons at
530 nm would not only excite trypto-
phan, but also NADH and riboflavin,
whose fluorescence features around
320–370 nm, 420–500 nm, and 520–
620 nm, respectively, would provide
multiple cross-checking biological sig-
natures of the particle [10].

We performed numerical simula-
tions to estimate the performance of
a non-linear 2PEF-lidar, compared to
a linear 1PEF-lidar (emission wave-
length 266 nm), in the case of trypto-
phan fluorescence detection. Although
ultra-short terawatt lasers that emit

around 530 nm are not commercially
available yet, recent developments in
ytterbium-based lasers are very encour-
aging, reaching up to the petawatt level
(at the fundamental wavelength, to be
frequency doubled) in the laboratory.
In these simulations, we assumed that
the laser intensity decreases only by lin-
ear extinction processes (Rayleigh–Mie
scattering and absorption from atmo-
spheric molecules) as it propagates in
air to the aerosol plume. The number
Nf(R) of n-photon-excited fluorescence
(nPEF, n = 1 or 2 in the calculations be-
low) photons/pulse detected from the
distance R can be described by the fol-
lowing equation:

Nf(R) = �(R)σ(n)ηIn
0 τζ(R, λ)

A

4πR2

× S∆R exp


−

R∫

0

α(R, λf)

−nα(R, λp)dR


 ,

where �(R) is the concentration of
aerosol particles, σ(n) is the n-photon
absorption cross section for one mi-

FIGURE 2 Simulated flu-
orescence lidar signal for
tryptophan detection in
bioaerosols. The collected
2PEF intensity is higher
than 1PEF for distances
over 1–2 km, due to the
lower atmospheric trans-
mission in the UV (Ray-
leigh scattering and ozone
absorption, here typically
50 and 100 µg/m3)

croparticle, η is the fluorescence yield,
I0 is the initial laser pulse intensity, τ is
the pulse duration, A is the receiver tele-
scope area, ζ is the detection efficiency,
S is the beam surface, ∆R is the spa-
tial resolution, and α is the atmospheric
extinction at the fluorescence and ex-
citation wavelengths λf and λp, respec-
tively. α widely favors longer wave-
lengths, because of the λ−4 dependence
of Rayleigh scattering and molecular
absorption in the UV. Around 266 nm,
the major absorbing molecule in the at-
mosphere is ozone.

In the simulations, we used the fol-
lowing parameters: particle size 1 µm
(average diameter), 108 Trp molecules/
particle, σ(1) = 2 ×10−17 cm2 [11], σ(2)

= 1 ×10−50 cm4 s/photon [12, 13], η =
0.13 [11, 12], ζ = 0.2, A = 0.125 m2

(40-cm-diameter telescope), and S =
10 cm2. The 1PEF-lidar simulations
used the specifications of best commer-
cially available Nd : Yag lasers (fourth
harmonic), with 100 mJ at 266 nm
and 10-ns pulse duration, while for the
2PEF simulations we used the Teramo-
bile laser specifications (400 mJ, 80 fs).
The cross sections are α1P = αRayleigh
(266 nm) +NOzoneσOzone (266 nm) =
1.6 ×10−4 m−1+NOzoneσOzone (266 nm)
with σOzone (266 nm) = 1 ×10−17 cm2,
α2P = αRayleigh(530 nm) = 1 ×10−5 m−1

(for atmospheric transmission parame-
ters see [14]). Figure 2 shows the results
of our simulations (Nf(R)/pulse from
Trp, for 1PEF- and 2PEF-lidars in the
case of a 10-m-diameter plume con-
taining 100 bacteria/cm3), as a function
of the distance R between the plume
and the lidar system. The ozone con-
centration of 50 µg/m3 (full line) is
typical for populated areas (urban or
peri-urban conditions). Because of the
strong UV extinction, 2PEF-lidar is
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much more efficient than 1PEF-lidar
for distances beyond 2 km. The dis-
tance R0 beyond which 2PEF is more
efficient than 1PEF strongly depends
on the ozone concentration. In par-
ticular, 1PEF-lidar will not be practi-
cable (limited to only a few hundred
meters) in urban conditions in sum-
mer, where average O3 concentrations
very often exceed 100 µg/m3 (dashed
line in Fig. 2; in ozone episodes up to
360 µg/m3, corresponding to the CEE
99 standard alarm level).

The simulations also provide esti-
mations of the typical 2PEF-lidar de-
tection limits. As Nf(R) is proportional
to the product �(R)∆R, the longer the
integration distance, the better the sen-
sitivity. As an example, for the aver-
age ozone concentration of 50 µg/m3,
we obtain a minimum detectable con-
centration (corresponding to one fluo-
rescence photon/pulse) as low as four
bacteria/cm3 at 3 km or 10 bacteria/cm3

at 4 km with a 10-m distance reso-
lution. At these distances and ozone
concentrations, 1PEF-lidar detection is
almost useless. Saturation and bleach-
ing [12] do not affect these remark-
able 2PEF-lidar sensitivities, as each
two-photon-excited Trp molecule only
emits typically 0.1 photon per excit-
ing cycle. The estimated detection limit
might strongly vary from one type
of bacteria to another, because of the
variations of the fluorescence quan-
tum yield η [13]. Even for the values
taken here [11], which correspond to
fluorescence measurements of bacil-
lus subtillus and bacillus cereus, vari-
ations of up to an order of magni-
tude have been observed. These varia-

tions in η, however, affect the absolute
detection limits for a type of bacte-
ria, but not the 1PEF- or 2PEF-lidar
comparison.

The main limitation of 2PEF-lidar
is, however, the ability to deliver the re-
quired intensity at the target plume lo-
cation. In our simulations, we assumed
the optimum situation where a success-
ful control of the non-linear propaga-
tion (Kerr focusing and pulse compres-
sion) in air until the target was real-
ized by using both spectral and spatial
phase control. Although phase control
could be demonstrated on distances in
the 100-m range [3], and chirp-induced
effects could be observed on self-phase
modulation up to 10 km [2], no system-
atic investigation could be performed
so far on the evolution of the beam in-
tensity profile on the km scale. Further
investigations, both theoretical and ex-
perimental, are therefore needed to bet-
ter control the propagation of the ultra-
short pulses to the target location. So-
phisticated shaping techniques that al-
low us to precisely set the spectral and
spatial phases of the laser pulse (tempo-
ral shaping and adaptive optics) will be
of great use, as demonstrated for fusion
applications [15]. Shaping the pulses in
2PEF experiments and using genetic al-
gorithms moreover recently showed that
two species exhibiting the identical lin-
ear fluorescence spectrum [7] can be ef-
ficiently distinguished. This remarkable
experiment opens new perspectives in
identifying bioagents from other fluo-
rescing particles using 2PEF-lidars.
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